

FOR IMMEDIATE RELEASE

ATON RESOURCES FIRST DRILL RESULTS FROM THE CURRENT DRILL CAMPAIGN AT HAMAMA ENCOUNTERED EXCELLENT GOLD – SILVER VALUES INCLUDING 17 METRES OF 2.91 g/t Au AND 51.37 g/t Ag ENCLOSED WITHIN A HALO OF 37.1 METRES OF 1.81 g/t Au AND 35.87 g/t Ag.

July 14, 2016: Aton Resources Inc. (TSX-V:AAN) ("the "Company") is very pleased to report that assay results for the early holes in the current drill campaign encountered Drilling commenced on the 31st March with excellent gold – silver mineralization. diamond drill hole AH-59 which targeted the Gold Oxide Cap north of and down dip from AHA-34 at Hamama West. AHA-34 had intersected 9 meters at 1.3 g/t Au and 70.6 g/t Ag in a previous drill campaign. Drill hole ANA-60 was sited behind AHA-59 to test the down dip extension to the mineralization. A drill hole further north again, AHA-61 was sited to test the mineralization down dip from both holes as shown in the cross section figure 1. Very interesting lithologies were encountered in each hole confirming the mineralization as being in a volcanic associated massive sulphide (VMS) environment. AHA-59 in the oxidized zone returned 5.1 meters at 0.89 g/t Au and 16.44 g/t Ag. Up-hole from the gold – silver mineralization, 3.8 meters of 0.79% Zn was intersected. Drill hole AHA-60 tested the deeper extension to this mineralization and returned 28 meters of 2.23 g/t Au and 42.2 g/t Ag in the sulphide zone. Up-hole from this are two narrower zones. These were 4.45 meters at 0.66 g/t Au with 19.94 g/t Ag; plus 6 meters at 0.65 g/t Au and 15.8 g/t Ag. Once again, zinc mineralization was encountered up-hole from the gold - silver intersections; in AHA-60 it was 23.5 meters of 2.5% Zn. Although there has been secondary migration and enrichment in the oxide environment, stratigraphically these zinc-rich zones are sitting under the mineralized exhalite unit that is carrying the precious metals. This is normal in a VMS situation.

Highlights:

- Drill holes AHA-59, AHA-60 and AHA-61 were drilled on the same section as previously drilled hole AHA-34 (9 meters at 1.3 g/t Au and 70.6 g/t Ag) but down dip from it. AHA-59 in the oxide zone adjacent AHA-34 returned 5.1 meters at 0.89 g/t Au and 16.44 g/t Ag. AHA-60 down dip again but in the sulphide zone returned 28 meters of 2.23 g/t Au and 42.2 g/t Ag showing a marked increase in thickness and grade. Results from hole AHA-61, down dip again, have not been received. See figure 1.
- The higher grade precious metal intersections are enveloped by a lower grade halo of mineralization. Thus, in AHA-60 the 17 meters at 2.9 g/t Au & 51.4 g/t Ag (1 g/t Au cut-off) sits within an intersection of 28 meters at 2.23 g/t Au & 42.2 g/t Ag (0.5 g/t Au cut-off). This in turn is enclosed in 37 meters at 1.8 g/t Au &

35.9 g/t Ag. (0.25 g/t cut-off). The mining cut-off will be calculated later during modeling.

• In both AHA-59 and AHA-60, elevated zinc values were encountered; 3.8 meters of 0.79% Zn in AHA-59 and 23.5 meters of 2.5% Zn in AHA-60. These zones stratigraphically underlie the gold – silver mineralized exhalite.

Mark Campbell, Chief Executive Officer of Aton Resources stated "These exciting results from Hamama West are confirming the potential of both the near surface Gold-Oxide Cap, and_the deeper sulphide mineralization to host a significant resource. Further assay results are expected in the very near future and these should contribute towards the goal of achieving this. We have close to 3,000 square kilometers in two promising concessions that includes a number of old mines that we are re-assessing. Currently the exploration team is preparing to process the last of the samples from stage one of the 3,500-meter drilling program at Hamama West. We are excited to start stage two of the drilling program to carry on filling gaps in the drill pattern over the Gold-Oxide Cap and the deeper primary sulphide targets. We are on track to complete our initial NI 43-101 compliant resource estimate for Hamama West in Q3."

Figure 1: Cross section showing selected intervals for AHA-059 and AHA-060

Table 1: Au-Ag mineralized intervals for AHA-059 and AHA-060

Hole ID	From (I	m)	To (m) Interval (m)) Au (g/t)	Ag (g/t)
AHA-059	34	39.1	5.1	0.89	16.44
AHA-060	40.5	46.5	6	0.65	15.8
AHA-060	63	67.43	4.43	0.66	19.94
AHA-060	71	99	28	2.23	42.2

Table 2: Zn mineralized intervals for AHA-059 and AHA-060

Hole ID	From (m)	To (m) Interval	Zn (%)	
AHA-059	19	22.8	3.8	0.79	
AHA-060	6.5	30	23.5	2.5	

See the appendix for a full list of assays.

Figure 2. Geological map of western Hamama West showing drill holes AHA-59 & AHA-60.

INFORMATION CONCERNING HAMAMA VMS PROJECT

The Hamama project lies within a belt of mineralization and old mines that extends east northeasterly for 40 km across Aton Resources' Abu Marawat Concession. The Main Horizon at Hamama has a strike length of some 3 km but extensions along the same stratigraphic horizon extend this to about 4 ½ km. This stratigraphic horizon needs exploration to search for more occurrences. The Hamama mineralized horizon is divided into three main zones; Hamama West, Hamama Central and Hamama East. Mineralization at Hamama outcrops at surface, and at Hamama West is deeply weathered into a soft and friable oxidized blanket called the Gold-Oxide Cap, which extends over 900 m in strike length and has an average vertical depth of 35 m. Apart from the intersections announced herein, drill results in oxide at Hamama West include 37 m at 2.32 g/t Au and 107.1 g/t Ag in AHA-15, 32.6 m at 1.37 g/t Au and 56.4 g/t Ag in AHA-37 and 19 m at 2.46 g/t Au and 157.3 g/t Ag in AHA-46. Preliminary metallurgical (bottle-roll) test results on the Gold-Oxide Cap returned up to 92.2% Au and 65% Ag recovery by cyanide leach from oxide (see January 13, 2015 News Release).

Primary sulphide mineralization at Hamama West returned such intercepts as 48 m at 1.45 g/t Au and 31.8 g/t Ag in AHA-23 and 88 m at 1.11 g/t Au and 118 g/t Ag in AHA-31 (see News Release dates May 12, 2015). The last drill hole from the 2015 drilling program, AHA- 58, was entirely mineralized, from surface to 210 m depth, and includes 39 m at 1.64% Zn, 0.25 g/t Au and 25.7 g/t Ag (53 m to 92 m), 12.3 m at 2.49% Zn, 0.29% Cu, 0.26 g/t Au and41.4 g/t Ag (92 m to 104.3 m), 43.5 m at 3.70% Zn, 0.23% Cu, 2.61 g/t Au and 150 g/t Ag(112.5 m to 156 m) and 50.7 m at 0.69 g/t Au and 29.7 g/t Ag (160 m to 210.7 m).

About Aton Resources Inc.:

Aton Resources Inc. (**TSX-V:AAN**) is exploring potentially economic gold, silver and base metal deposits in the Central Eastern Desert of Egypt with the aim of developing mines. The Company's 100% owned concessions, Abu Marawat and Fatiri, between them cover 2,772 km² of under explored ground. Evidence of gold and copper mining in the concessions dates the many surface workings to pre-historic possibly Old Kingdom through Ptolemaic, Roman and Early Arab times. Three historic gold mines occur within the two concessions: British miners produced gold at Sir Bakis, Semna and Abu Zawal into the 1920s.

Much of the gold vein mineralization in the district is orogenic related, quartz-carbonate type and is associated with major shear-zones. Centamin's Sukari gold mine is located 400 km to the south of Abu Marawat, in the same belt. The Abu Marawat and Fatiri Concessions cover a Proterozoic Pan-African greenstone belt. This is part of the Arabian Nubian Shield that also occurs in Saudi Arabia, Sudan, Eritrea and Ethiopia. Significant VMS deposits in this belt includes Jabel Sayid (Saudi Arabia); Bisha Main and Harena (Eritrea); Hassai, plus Hadal Awatib (Sudan) and Emba Derho, Debarwa plus Adi Nefas (Eritrea). Alexander Nubia's Hamama gold-silver VMS is geologically similar to these VMS deposits. Similar geological settings to the Arabian Nubian Shield include the greenstone belts of the Yilgarn (Western Australia), Abitibi (Quebec) and Birimian (West Africa). The Arabian Nubian Shield is most similar in age to the latter.

The Company's land package, located 350-400 km southeast of Cairo, includes excellent infrastructure. Hamama has direct access to two four-lane highways, a zero-gradient railway bed that runs through Abu Marawat concession to a Red Sea port, multiple high-voltage (capacity 220kV) power lines that cross between the two concessions, a water pipeline and nearby major cities. The latter include Qena, on the Nile 70 km to the west and the Port of Safaga, on the Red Sea, 50 km to the east. The city of Luxor, a two-hour drive from Hamama, has an international airport.

Qualifying Person:

The technical information contained in this News Release was prepared by Roderick Cavaney BSc, MSc (hons), MSc (Mining & Exploration Geology), AusIMM (f), SEG, GSA, SME, Exploration Manager for Aton Resources Inc. Mr. Cavaney is a qualified person (QP) under National Instrument 43-101 Standards of Disclosure for Mineral Projects.

For more information on Aton Resources Inc., visit us at www.atonresources.com or please contact:

Mark Campbell President and Chief Executive Officer Aton Resources Inc. Tel: +1-936-689-2589 Email: mcampbell@atonresources.com

Cautionary Note Regarding Forward-Looking Statements

The securities of Aton Resources Inc. described herein have not been and will not be registered under the United States Securities Act of 1933, as amended (the "U.S. Securities Act") or any state securities laws and may not be offered or sold within the United States or to U.S. persons unless registered under the U.S. Securities Act and applicable state securities laws or an exemption from such registration is available. Some of the statements contained in this release are forward-looking statements, such as estimates and statements that describe the Company's future plans, objectives or goals, including words to the effect that the Company or management expects a stated condition or result to occur. Since forward- looking statements address future events and conditions; by their very nature they involve inherent risks and uncertainties. Actual results in each case could differ materially from those currently anticipated in such statements. Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release

APPENDICES

From	То	Interval	Au (g/t)	Ag (g/t)	Cu (ppm)	Pb (ppm)	Zn (ppm)
0	1	1	0.009	2.1	764	21	1840
1	2.5	1.5	0.008	4.6	999	25	3930
2.5	3.3	0.8	0.01	2.1	601	53	1375
3.3	4.3	1	0.029	1.9	983	138	2610
4.3	5.3	1	0.033	2.9	1220	66	3340
5.3	6.3	1	0.022	3.8	1110	56	2870
6.3	7.2	0.9	0.017	4	806	32	3590
7.2	8.1	0.9	0.035	5.4	848	1890	3260
8.1	9	0.9	0.017	2.1	683	317	2670
9	10.3	1.3	0.023	1.6	609	77	3990
10.3	11.5	1.2	0.037	1.4	295	23	1085
11.5	12.55	1.05	0.019	1.8	246	134	609
12.55	13.7	1.15	0.012	3.5	440	448	3050
13.7	14.9	1.2	0.008	1	296	150	3020
14.9	16	1.1	0.005	2	574	565	3760
16	17	1	0.019	2.8	459	880	2250
17	18	1	0.041	3.8	317	261	2800
18	19	1	0.149	5.1	387	615	3680
19	20	1	0.059	4.8	273	170	5320

Appendix 1: Raw Assay Results for AHA-059

From	То	Interval	Au (g/t)	Ag (g/t)	Cu (ppm)	Pb (ppm)	Zn (ppm)
20	21	1	0.008	4.1	271	35	8160
21	22	1	0.054	4.7	78	207	9120
22	22.8	0.8	0.199	3	286	453	6330
22.8	23.9	1.1	0.253	6.6	58	119	2590
23.9	25	1.1	0.464	11.2	87	158	1810
25	26	1	0.467	11.9	93	149	1610
26	27	1	0.254	13.5	123	151	1880
27	28	1	0.089	12.6	185	216	1990
28	29	1	0.282	16	152	427	3790
29	30	1	0.06	4.5	31	74	607
30	31	1	0.243	8.5	67	222	1690
31	32	1	0.293	11.2	75	301	834
32	33	1	0.36	18	140	433	1260
33	34	1	0.333	16.1	95	351	1860
34	35	1	0.975	16.1	235	689	3260
35	36	1	0.561	18.8	122	301	975
36	37	1	0.726	8.2	113	526	962
37	38	1	0.378	16.2	143	233	629
38	39.1	1.1	1.71	22.3	237	526	1295

From	То	Interval	Au (g/t)	Ag (g/t)	Cu (ppm)	Pb (ppm)	Zn (ppm)
6.5	7.5	1	0.022	1.3	503	120	7710
7.5	8.8	1.3	0.02	3	915	143	8740
8.8	9.8	1	0.037	3.2	1205	253	13050
9.8	10.8	1	0.027	2.1	823	187	10050
10.8	12.1	1.3	0.016	2.8	717	95	8120
12.1	12.4	0.3	0.034	3	2230	666	139500
12.4	13.4	1	0.016	0.7	537	23	28900
13.4	14.4	1	0.0025	0.3	418	10	31300
14.4	15.9	1.5	0.0025	0.5	621	15	33400
15.9	16.6	0.7	0.008	1.1	762	61	62200
16.6	17.4	0.8	0.01	1.5	420	96	93000
17.4	18.55	1.15	0.009	1.9	1420	148	15350
18.55	19.55	1	0.009	2.5	1470	108	10100
19.55	20.55	1	0.016	3.1	3200	1080	21300
20.55	21.55	1	0.009	1.7	1000	1000	14850
21.55	22.6	1.05	0.007	1.2	575	270	13600
22.6	23.6	1	0.052	1	197	134	32000
23.6	24.6	1	0.055	5.7	1440	3620	46700
24.6	25.6	1	0.033	2.3	721	2090	40200
25.6	27	1.4	0.041	1.6	406	142	21200
27	28.1	1.1	0.122	2.1	135	221	1420
28.1	29	0.9	0.06	2.4	574	918	18300
29	30	1	0.067	1.7	141	195	19800
30	30.65	0.65	0.038	1.6	74	130	1670
30.65	32	1.35	0.049	1.9	104	109	369
32	33	1	0.043	3.1	130	126	405
33	34.4	1.4	0.11	4.7	106	96	323
34.4	36	1.6	0.115	4.8	138	168	393
36	37	1	0.055	3.3	62	106	138
37	37.5	0.5	0.047	2.5	35	65	32
37.5	38.6	1.1	0.069	1.3	21	50	61
38.6	39.6	1	0.21	2.9	14	52	37
39.6	40.5	0.9	0.339	7.7	44	67	64
40.5	41.5	1	0.611	12.1	124	126	122
41.5	42.5	1	0.596	12	112	125	104
42.5	43.5	1	0.6	12.5	73	134	1145
43.5	44.5	1	0.515	16.1	79	147	3610
44.5	45.5	1	0.828	20.7	128	181	713
45.5	46.5	1	0.767	21.4	120	178	1165
46.5	47.5	1	0.406	8.8	51	86	307
47.5	48.5	1	0.19	3.6	23	52	207
48.5	49.5	1	0.214	4.9	28	60	256
49.5	50.22	0.72	0.14	3.2	18	32	117
50.22	51.22	1	0.651	18.7	50	73	132
51.22	52	0.78	0.141	7.4	12	59	57
52	53	1	0.245	3.3	17	38	42
53	54	1	0.133	3.1	18	36	194
54	55	1	0.154	10.2	25	43	85
55	56	1	0.125	7.4	20	49	239

Appendix 2: Raw Assay Results for AHA-060

From To Interval Au (g/t) Ag (g/t) Cu (ppn	n) Pb (ppm) Zn (ppm)
56 57 1 0.181 6 17	42 155
57 58 1 0.115 4.6 16	33 67
58 59.02 1.02 0.097 2.3 16	27 41
59.02 60 0.98 0.152 4.9 27	34 34
60 61 1 0.121 2.6 24	33 41
6161.90.90.1642.525	34 42
61.9 63 1.1 0.439 12.2 44	72 44
63 63.6 0.6 0.831 23 89	150 95
63.6 64.6 1 0.736 18.8 88	127 116
64.665.610.70625130	207 354
65.666.430.830.56822.2138	196 156
66.43 67.43 1 0.533 12.3 48	85 48
67.43 68 0.57 0.405 9.9 48	153 67
68 69 1 0.388 12.2 88	245 176
69 70 1 0.406 13.7 94	191 579
70 71 1 0.461 15.8 100	134 341
71 72 1 0.672 19.3 110	208 428
72 73 1 0.588 17.7 103	189 336
73 74 1 0.608 19.9 119	200 293
74 75 1 1.155 28.7 92	149 223
75 76 1 1.24 38.1 138	138 196
76 77 1 1.025 26.9 103	171 321
77 78 1 0.848 47.9 162	340 539
78 79 1 19.8 164 2590	13600 116000
79 80 1 6.65 83.8 1735	6240 37300
80 81.08 1.08 2.35 56.1 496	1950 9370
81.08 82 0.92 3.06 72.9 903	3130 27100
82 83 I 1.505 49.8 223	1175 4110
83 84 1 1.4/5 55.1 318 94 95 1 1.5/5 52.5 205	1585 4100
84 85 1 1.565 53.5 385 95 96 1 1.255 49.2 260	2190 /110
85 86 I 1.355 48.2 269 86 87 I 0.780 28.1 154	1545 4200 501 001
80 8/ 1 0./89 38.1 154 97 99 1 1.475 20 172	501 901
8/ 88 1 1.4/5 30 1/2 99 90 1 1.1 21.0 144	628 1165 552 1120
88 89 1 1.1 21.9 144 80 80.5 0.5 0.26 50 52	552 1150 241 580
69 69.5 0.5 0.20 5.9 55 90.5 00 0.5 1.29 20.5 276	1225 2600
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1233 2090
01 02 1 12 231 310	1300 4990
91 92 1 1.2 25.1 519 02 03 1 1.105 34.1 320 03 03 1 03 03 03 03 03	1115 3420
92 95 1 1.105 54.1 52093 94 1 1.71 44 529	1835 3980
94 95 1 235 562 714	2320 4030
95 96 1 0.671 17.5 185	1455 2670
96 97 1 0713 14 196	783 1560
97 98 1 245 373 421	1460 2040
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1020 1455
99 100 1 0.015 2.4 65	78 328