

FOR IMMEDIATE RELEASE:

ATON ANNOUNCES GOLD ASSAYS UP TO 321 g/t FROM SELECTED GRAB SAMPLES AT ITS RECENTLY DISCOVERED RODRUIN PROSPECT

Vancouver, February 6, 2018: Aton Resources Inc. (AAN: TSX-V) ("Aton" or the "Company") is very pleased to provide investors with an update on exploration activities at the Company's 100% owned Abu Marawat Concession ("Abu Marawat" or the "Concession"), and to announce the results of the initial surface grab and channel sampling programme completed in December 2017 at the recently discovered Rodruin prospect.

Highlights:

- A first-pass surface sampling programme has been completed, consisting of a total of 78 samples, including 4 QAQC samples. Of the 74 'primary' samples, 67 were grab samples and 7 were channel samples, taken over nominal 2m intervals. Samples were analysed for gold by fire assay and a 33 element geochemical suite;
- Samples returned **gold assay grades of up to 321 g/t Au**, and included further grades of 22.3 g/t Au, 20.6 g/t Au and 18.6 g/t Au;
- The 74 samples averaged 7.61 g/t Au, of which 7 samples (9% of total) returned gold assay grades above 10 g/t Au, 48 samples (65% of total) returned grades above 1 g/t Au, and 61 samples (82% of total) returned grades above 0.5 g/t Au;
- High grade zinc assays were also returned, with 9% of all samples returning assays greater than 5% Zn, including 2 very high grade samples which assayed 37.9% and 36.7% respectively;
- Samples also returned assays of up to 146 g/t silver, 1.75% copper and 2.18% lead;
- The initial sampling programme confirms the potential at Rodruin for a large "Hamama style" carbonate hosted body of gold-zinc mineralization, as well as a later phase of high grade shear zone hosted gold mineralization.

"This is an exciting day for Aton as these results confirm the potential for Rodruin to become a major gold discovery in Egypt, and the biggest discovery to date by the Company" said Mark Campbell, President and CEO. "These samples were taken from the large Rodruin prospect, over an area covering at least 700m x 300m, and over a vertical elevation range of more than 100m, where the ancients were working, and have come back with some highly significant grades. We are doing more surface sampling, and will imminently start access road construction, to assist us in laying out a drilling program at Rodruin, which we hope to begin by April. Our goal is to fast track Rodruin along with our development project at Hamama"

Rodruin Prospect

The Rodruin prospect (see Figure 1) was discovered in early December 2017 by AAN's field geologists (see news release dated December 14, 2017), and is located approximately 18km east of the Company's Hamama West mineral deposit. The Rodruin site is located in an area of 2 major roughly E-W trending mountain ridges in a remote and rugged location. It is currently only accessible on foot, but can be reached via driveable desert tracks which pass within about 3km of the prospect.

The Rodruin prospect was first identified as a clay-Fe spectral target during the detailed Concession wide Landsat-ASTER remote sensing study undertaken during 2016-17, with further inspection of satellite imagery suggesting possible signs of ancient mining activity in the general area. Field inspection of the Rodruin prospect immediately led to the identification of major ancient workings over a large area, occurring within a series of carbonate rocks. The ancient workings are the largest and most significant ancient workings identified to date in the Concession. The ancient workings are spread over an area of at least 500m x 400m in size, and over a vertical elevation range of more than 100m, and occur on both the northern and southern ridges of the Rodruin prospect. The ancient miners exploited gossanous oxide mineralization, presumed to be very high grade in places, with the workings frequently localized along structural or shear zones. The ancient miners are believed to have been mining gold, as evidenced by archaeological remains in the general area, and the identification of coarse gold in hand specimens.

Figure 1: Abu Marawat regional geology, showing the location of the Rodruin prospect

December 2017 surface sampling programme

A short programme of surface sampling was carried out in mid-December 2017, with 67 grab samples and 7 channel samples, over nominal 2m intervals, collected. These samples were selectively taken, with the intention of confirming whether the mineralization identified in the field at Rodruin carried grades or not.

All samples were crushed to -4mm at the Company's onsite sample preparation facility at Hamama, with *c*. 500g splits shipped to ALS Minerals at Rosia Montana, Romania for analysis. Samples were analyzed for gold by fire assay using analytical code AA-Au23 (repeated by AA-Au25 and Au-GRA21 for samples which

returned gold grades greater than 10 g/t and 100 g/t Au, respectively). Samples were also analyzed for Ag, Cu, Pb and Zn as part of a 33 element suite by ICP atomic emission spectrometry, using analytical code ME-ICP61. Samples with Cu, Pb and Zn assays greater than 10,000 ppm (1%) were re-analyzed using ore grade analytical codes Cu-OG62, Pb-OG62, and Zn-OG62 respectively, and samples assaying greater than 30% Zn were re-analyzed using analytical code Zn-AA46.

Gold			Silver			Copper			Lead			Zinc		
Assay	No.	%	Assay	No.	%	Assay	No.	%	Assay	No.	%	Assay	No.	%
>100g/t	1	1%	>250g/t	0	0%	>5%	0	0%	>5%	0	0%	>25%	2	3%
>10g/t	7	9%	>100g/t	1	1%	>1%	3	4%	>1%	1	1%	>10%	3	4%
>5 g/t	14	19%	>50g/t	1	1%	>0.5%	11	15%	>0.5%	5	7%	>5%	7	9%
>2.5g/t	26	35%	>25g/t	7	9%	>0.25%	16	22%	>0.25%	16	22%	>1%	14	19%
>1g/t	48	65%	>10g/t	25	34%	>0.1%	26	35%	>0.1%	22	30%	>0.5%	29	39%
>0.5g/t	61	82%	>5g/t	47	64%							>0.25%	47	64%
Average grade : 7.61 g/t Au			Averag 11.0	ge grad 7 g/t A	de: \g	Average grade : 0.20 % Cu			Average grade : 0.14 % Pb			Average grade : 2.10 % Zn		

A breakdown of the sample results, excluding QAQC samples, is provided below in Table 1, and full details of all the samples are provided in Appendix A, including Au, Ag, Cu, Pb and Zn assays.

Table 1: Summary of gold, silver, copper, lead and zinc surface sample assays

Significant gold assays were returned from most of the samples with 9% assaying more than 10 g/t Au, 65% of the samples assaying over 1 g/t Au, and 82% of the samples assaying over 0.5 g/t Au (see Figure 2). The overall **average grade of all the samples was 7.61 g/t Au**, but this was biased by a single sample from the North Ridge, which assayed 321 g/t Au (and 146 g/t Ag). Even if this sample was excluded from the dataset, the remaining 73 samples still averaged 3.32 g/t. These initial gold results compare very favorably to the Hamama area, which has produced only a handful of gold assay values above 10 g/t, in comparison to gold grades of **321 g/t**, **22.3 g/t**, **20.6 g/t and 18.6 g/t from the Rodruin samples**.

Figure 2: Sample locations and gold assay results

Assay values for silver, copper, lead and notably zinc were also significantly elevated (see Table 1). Silver averaged 11.07 g/t across the complete dataset, which reduces to 9.22 g/t when the significant 146 g/t outlier is excluded from the data. Zinc values also showed significant mineralization, as was expected with the identification of hemimorphite-rich gossan at Rodruin, with 9% of all samples averaging greater than 5% Zn, including 2 very high grade samples, which assayed 37.9% and 36.7% Zn respectively. Copper and lead assays were also elevated, but were significantly lower than the Zn values, as was to be expected from the sampling – only limited amounts of copper supergene minerals were seen and identified. This metal association is similar to Hamama.

Discussion

The mineralization at Rodruin is interpreted as belonging to 2 fairly distinctive and separate styles, and has been sampled over an area of at least 700m x 300m (Figure 2): background carbonate/gossan hosted "Hamama style" mineralization, and shear zone hosted mineralization.

The first style of carbonate and/or gossan hosted mineralization carries lower levels of Au (average 2.18 g/t Au) and Ag, and is considered to be broadly similar to that at Hamama. It also contains strongly elevated levels of Zn, Cu, Pb, As, Cd, Sb, and Bi (see Table 2). This mineralization is likely to be of a low temperature, acidic, and probably magmatically derived nature, and is similar to the hybrid VMS-epithermal mineralization interpreted at Hamama, and has a wide areal extent at Rodruin.

A very strong correlation between Au and Ag grades, and significantly higher grades of Au (shear zone style samples averaged 20.45 g/t Au), as well as Ag, Cu, Pb and Zn, are seen in the second shear zone style of mineralization interpreted at Rodruin (see Table 2). This style of mineralization appears to have represented the main target of the ancient miners, and is potentially very high grade in places, but is areally more restricted relative to the background gossan hosted mineralization.

Average grades									
Element	All samples	Shear zone style	Gossan hosted style						
Au (ppm)	7.61	20.45	2.18						
Ag (ppm)	11.15	21.23	6.88						
Cu (%)	0.20	0.45	0.10						
Pb (%)	0.14	0.30	0.07						
Zn (%)	2.10	4.78	0.96						

Table 2: Average assay grades of Rodruin samples

The results from the December 2017 surface sampling support the initial interpretation that **the Rodruin prospect potentially hosts a large body of Au(-Ag-Zn) mineralization**, of a similar style to that at Hamama, hosted in a distinctive, probably replacive, carbonate unit. The new assay results, coupled with the presence of significant ancient processing sites in the general East Eradiya/Rodruin area, the high grade nature of the tailings previously sampled at East Eradiya (see news release dated December 14, 2017), the presence of major ancient underground mine workings, the limited presence of significant copper mineralization or staining, and the identification of visible gold in hand specimens all combine to strongly suggest that **the Rodruin prospect represents a major ancient mining site from which gold was exploited from high grade gossanous structures and veins**, localized within a large body of background carbonate hosted Au-Zn mineralization.

The December 2017 surface sampling programme at Rodruin has successfully indicated the potential of the target, and has confirmed the existence of both Hamama style carbonate/gossan hosted mineralization, as well as high grade structurally controlled shear zone hosted mineralization. As originally interpreted from field observations it appears that the overall gold grade at Rodruin is potentially significantly higher than that at Hamama. The background gossan/carbonate hosted mineralization appears to be very similar to Hamama, but with potentially significantly higher gold grades. Mineralization at Rodruin is directly spatially related to the outcropping gossanous carbonate unit, as it is at Hamama (see

Figure 3). The area of the outcropping mineralization hosting carbonate rocks at Rodruin can be seen to be much larger than that at Hamama, indicating the potential for a considerably larger body of mineralization than that identified to date at Hamama.

Rodruin will immediately become the prime focus of the Company's exploration efforts, going forwards into 2018, with further surface sampling having been commenced, and work planned to start imminently on the construction of a road into the prospect, with the aim of allowing drilling to commence by April 2018.

Figure 3: Comparison between the extent of the carbonate outcrops at a) Rodruin prospect, and b) Hamama area

About Aton Resources Inc.

Aton Resources Inc. (AAN: TSX-V) is focused on its 100% owned Abu Marawat Concession ("Abu Marawat"), located in Egypt's Arabian-Nubian Shield, approximately 200 km north of Centamin's Sukari gold mine. Aton has identified a 40 km long gold mineralized trend at Abu Marawat, anchored by the Hamama deposit in the west and the Abu Marawat deposit in the east, containing numerous gold exploration targets, including three historic British mines. Aton has identified several distinct geological trends within Abu Marawat, which display potential for the development of RIRG and orogenic gold mineralization, VMS precious and base metal mineralization, and epithermal-IOCG precious and base metal mineralization. Abu Marawat is over 738km² in size and is located in an area of excellent infrastructure; a four-lane highway, a 220kV power line, and a water pipeline are in close proximity.

Qualified Person

The technical information contained in this News Release was prepared by Roderick Cavaney BSc, MSc (hons), MSc (Mining & Exploration Geology), FAusIMM, GSA, SME, Vice President, Exploration, of Aton Resources Inc. Mr. Cavaney is a qualified person (QP) under National Instrument 43-101 Standards of Disclosure for Mineral Projects.

For further information regarding Aton Resources Inc., please visit us at <u>www.atonresources.com</u> or contact:

Mark Campbell President and Chief Executive Officer Tel: +202-27356548 Email: mcampbell@atonresources.com

Note Regarding Forward-Looking Statements

Some of the statements contained in this release are forward-looking statements. Since forward-looking statements address future events and conditions; by their very nature they involve inherent risks and uncertainties. Actual results in each case could differ materially from those currently anticipated in such statements.

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Appendix A – Sample Results

Sample ID	Easting	Northing	Sample Type	Au (ppm)	Ag (ppm)	Cu (%)	Pb (%)	Zn (%)	Sample Description	
18751	552315	2912989	Grab	1.43	10.5	0.32	0.63	36.70	Hemimorphite-rich loose gossan	
18752	552315	2912989	Grab	22.30	22.5	0.67	0.40	3.38	Siliceous material - gossan with Fe/Cu	
18753	552375	2913051	Grab	0.68	3.0	0.01	0.01	0.20	Gossan - some concentric zonation	
18754	552636	2913005	Grab	1.12	5.4	0.04	0.31	0.29	Gossanous horizon - possible bedding-parallel shear?	
18755	552783	2912745	Grab	2.19	10.3	0.00	0.00	0.05	Gossanous carbonate	
18756	552788	2912792	Grab	0.75	0.6	0.01	0.01	0.29	Chocolate brown gossan, with carbonate	
18757	552786	2913135	Grab	0.02	0.3	0.01	0.00	0.01	Gossanous tuffs - irregular replacement along fracture?	
18758	552725	2913058	Grab	1.50	10.9	0.15	0.45	0.64	Gossanous material, from ancient working	
18759	552773	2913043	Grab	1.69	5.4	0.12	0.27	0.39	Gossanous material with carbonate, from ancient working	
18760	553056	2913011	Grab	321	146	0.69	0.63	1.07	Brown gossanous vein, from ancient working	
18761	553029	2913005	Grab	18.60	12.3	0.37	0.01	0.85	Gossanous vein material, from ancient working, 12m depth	
18762	553045	2913012	Grab	12.75	27.2	0.78	0.32	9.81	Hemimorphite rich gossan, from ancient underground working	
18763				13.40	25.8	0.84	0.32	10.25	Duplicate of AHA-18762	
18764	553081	2912930	Grab	0.73	17.7	0.11	0.24	0.09	FeOx-rich quartz vein	
18765	552660	2912842	Grab	12.60	15.2	1.05	0.00	37.90	Hemimorphite-rich gossan	
18766	552846	2912718	Grab	0.03	1.1	0.01	0.00	0.08	Outcrop of carbonate-replaced tuffs	
18767	552753	2912681	Channel	0.15	7.2	0.01	0.01	0.06	Gossanous sheared contact (2m channel sample)	
18768	552734	2912690	Grab	0.21	2.0	0.01	0.00	0.17	Fresh carbonate, with patches of gossan	
18769	552716	2912726	Grab	0.40	4.9	0.01	0.01	0.08	Soft brown carbonate gossan at small ancient working	
18770	552676	2912817	Grab	3.40	19.5	1.00	0.03	1.69	Cu-stained gossan, from ancient working	
18771	552680	2912839	Grab	9.54	20.4	0.36	0.00	0.40	Gossan in shear zone, from big ancient working	
18772	552660	2912846	Grab	20.60	26.2	0.47	0.01	0.97	Red gossan, from ancient underground workings	
18773	552661	2912843	Grab	1.04	29.2	0.68	0.02	1.80	Loose quartz veined yellow gossan, from ancient u/g workings	
18774	552793	2912780	Grab	1.65	3.8	0.04	0.07	0.87	Very friable brown gossan, from ancient pit	
18775				<0.005	<0.5	15 ppm	2 ppm	39 ppm	Blank sample	
18775	552794	2912787	Grab	3.78	4.1	0.02	0.02	0.60	Soft brown gossan, from ancient pit	
18777	552791	2912814	Grab	0.33	1.7	0.01	0.01	0.10	Gossan in silica-carbonate outcrop, at ancient pit	
18778	552792	2912826	Grab	1.66	7.2	0.05	0.05	0.31	Soft brown gossan	
18779	552792	2912824	Grab	0.94	2.4	0.05	0.00	0.14	Outcrop at ancient working of carbonate gossan	
18780	552796	2912843	Grab	0.99	4.7	0.03	0.04	0.26	Dark brown friable carbonate gossan, from ancient working	
18781	552803	2912834	Grab	0.82	2.3	0.01	0.00	0.11	Gossanous material, from top of ancient shaft	

Sample ID	Easting	Northing	Sample Type	Au (ppm)	Ag (ppm)	Cu (%)	Pb (%)	Zn (%)	Sample Description	
18782	552821	2912827	Grab	3.72	1.7	0.03	0.00	0.17	Brown gossan from ancient "cave"/working	
18783	552806	2912837	Grab	1.42	9.3	0.01	0.00	0.13	Gossanous material, from ancient working	
18784	552806	2912832	Grab	1.98	5.0	0.01	0.00	0.08	Gossanous material, from ancient working	
18785	552704	2912918	Grab	0.48	7.4	0.01	0.00	0.35	Weakly mineralized quartz vein, with traces of Cu	
18786	552769	2912924	Grab	0.28	5.1	0.01	0.01	0.14	Gossan with quartz vein	
18787	552721	2912940	Grab	3.03	11.0	0.01	0.03	0.08	Outcrop of carbonate, with brown gossan	
18788	552702	2912923	Grab	6.06	12.2	0.04	0.05	0.26	Outcrop of carbonate with abundant brown gossan	
18789	552680	2912934	Grab	4.14	21.9	0.05	0.05	0.49	Soft brown gossanous material from small, ancient pit	
18790	552662	2912951	Grab	0.30	32.7	0.10	0.51	0.57	Soft brown/yellow gossan with some hematite, from small pit	
18791	552644	2912935	Grab	1.20	24.9	0.03	0.12	0.23	Soft brown gossan, from large ancient working	
18792	552639	2912941	Channel	0.57	3.8	0.01	0.02	0.12	2m channel sample from big working, red-brown gossan with narrow quartz vein	
18793	552637	2912934	Grab	0.81	10.3	0.05	0.40	0.57	Red-brown gossan from large ancient working	
18794	552637	2912934	Grab	0.17	6.0	0.05	0.15	0.29	Red-brown-yellow gossan, from wall of ancient working	
18795	552652	2912961	Grab	1.46	2.6	0.06	0.07	0.10	Outcrop of hematite, with some gossan	
18796	552624	2912922	Grab	9.05	28.1	0.04	0.04	0.36	Soft brown gossan, from ancient working	
18797	552622	2912913	Grab	2.66	4.2	0.04	0.04	0.14	Red-brown gossan from ancient working	
18798				<0.005	<0.5	2 ppm	1ppm	8 ppm	Flushing sample	
18799	552676	2912886	Grab	0.81	2.5	0.06	0.02	0.40	Hard brown gossan, from ancient working	
18800	552676	2912886	Grab	1.45	5.0	0.04	0.02	0.53	From ancient working, Soft brown gossan with some hard carbonate gossan, from ancient working	
18801	552671	2912923	Grab	0.32	2.2	0.03	0.02	0.23	Outcrop of hard red hematite gossan	
18802	552608	2912890	Grab	5.16	7.5	0.01	0.01	0.24	Red-brown gossan from ancient working	
18803	552615	2912889	Grab	2.72	9.8	0.02	0.00	0.31	Outcrop of red-brown gossan	
18804	552588	2912892	Grab	9.59	5.1	0.01	0.01	0.06	Yellow-red gossan on the top of ridge	
18805	552584	2912908	Grab	0.36	2.7	0.03	0.09	0.08	1m wide hard red gossan	
18806	552733	2912993	Grab	1.20	5.2	0.03	0.10	0.53	Red-brown gossan, from ancient working near gully	
18807	552356	2913031	Grab	1.63	9.9	0.04	0.02	0.82	Soft brown gossan from ancient working	
18808	552351	2913034	Grab	4.63	4.4	0.17	0.00	2.14	Hard brown gossan from ancient working	
18809	552356	2913026	Grab	2.62	6.0	0.16	0.01	1.63	Hard red-brown gossan from ancient working	
18810	552349	2913020	Channel	2.35	5.8	0.05	0.00	0.66	Hard brown/yellow/red gossan (2m channel sample)	
18811	552364	2913023	Channel	2.21	3.4	0.03	0.01	0.42	Hard brown/yellow/red gossan (2m channel sample)	
18812	552345	2913025	Channel	7.17	6.9	0.04	0.00	0.33	Hard brown/yellow/red gossan (3m channel sample)	

Sample ID	Easting	Northing	Sample Type	Au (ppm)	Ag (ppm)	Cu (%)	Pb (%)	Zn (%)	Sample Description	
18813	552342	2913022	Channel	7.77	4.9	0.04	0.01	0.34	Hard brown/yellow/red gossan (3.7m channel sample)	
18814	552357	2913008	Channel	1.59	8.4	0.22	0.27	0.18	2.7m chip channel sample from sheared volcanic tuffs with gossan, and narrow 3cm quartz vein	
18815	552360	2913003	Grab	1.62	7.2	0.09	0.36	0.58	Yellow siliceous gossan (1m wide)	
18816	552340	2912999	Grab	1.85	14.8	0.13	0.17	0.09	Quartz vein with iron oxides, at ancient working	
18817	552337	2913001	Grab	3.47	14.1	0.22	0.28	0.40	Quartz vein with iron oxides, inside ancient working	
18818	552329	2913008	Grab	0.57	3.0	0.63	0.27	9.68	Gossan from ancient working	
18819	552333	2913015	Grab	1.23	4.1	0.48	0.15	3.75	Red-brown gossan from ancient working	
18820	552331	2913013	Grab	0.58	3.9	0.93	0.06	7.90	Red-brown gossan from ancient working	
18821	552312	2912990	Grab	2.00	4.0	0.65	0.48	0.69	Sheared tuffs	
18822	552314	2912989	Grab	0.52	11.6	0.23	0.53	7.29	1m wide brown gossan	
18823	552387	2913011	Grab	3.60	15.4	0.10	0.00	0.81	Mixed quartz and gossanous veins	
18824	552388	2913036	Grab	0.62	6.5	0.05	0.01	0.56	3.4m wide hard brown gossan in ancient working	
18825	552375	2913054	Grab	0.39	3.6	0.02	0.01	0.25	3m hard red-brown gossan in ancient working	
18826	552422	2913062	Grab	4.14	5.1	1.31	0.07	10.50	Soft brown gossan	
18827				3.61	5.3	1.37	0.07	11.30	Duplicate of AHA-18826	
18837	552313	2912985	Grab	11.10	31.8	1.75	2.18	0.31	Quartz vein with some iron oxides from ancient working	