

FOR IMMEDIATE RELEASE

Aton announces the completion of and the first results from its RC exploration drilling programme at Abu Marawat

Vancouver, British Columbia, October 11, 2023: Aton Resources Inc. (AAN: TSX-V) ("Aton" or the "Company") is pleased to announce the completion of the reverse circulation percussion ("RC") programme drilling at its 100% owned Abu Marawat Concession ("Abu Marawat" or the "Concession"), in the Eastern Desert of Egypt, as well as the first results from the West Garida and Abu Gaharish prospects (Figure 1).

Highlights:

- 85 holes were drilled, for a total of 11,700m, during the regional exploration RC programme at the West Garida, Abu Gaharish, Semna and Zeno prospects;
- A further 628m was drilled from 3 groundwater exploration holes approximately 20km west of the Hamama project area;
- Significant flows were recorded from the groundwater exploration holes within Nubian Sandstone cover rocks, proving the concept that this unit could provide process water supplies for the planned Hamama West and Rodruin mining projects;
- Significant mineralised intersections from the Abu Gaharish prospect included 9m @ 2.10 g/t Au, 3m @ 4.61 g/t Au and 3m @ 3.27 g/t Au. The gold mineralisation was primarily concentrated in a broadly mineralised envelope at the Gaharish Main Zone;
- Narrow mineralised intersections at West Garida included 2m @ 3.66 g/t Au and 24.3 g/t Ag from Vein #1 and 1m @ 4.00 g/t Au from Vein #3.

"We are pleased to announce the successful completion of the regional RC exploration drilling programme at Abu Marawat, and to provide the first tranche of results" said Tonno Vahk, Interim CEO. "We are particularly happy with the results of the groundwater drilling in the Nubian Sandstone west of Hamama, designed to test the potential of these rocks to provide process water supplies to the planned starter heap leach mining project at Hamama West. The results were very encouraging with the drilling intersecting significant groundwater hosted in the Nubian cover. It is particularly encouraging that the drilling did not penetrate deep enough to intersect the main target, the basal Tarif Sandstone Unit of the Nubian, which suggests that this unit may host significant groundwater resources closer to Hamama than was previously anticipated. EMRA continue to review our submission to them detailing Commercial Discoveries at the Hamama West and Rodruin deposits, in accordance with the terms of the Abu Marawat Concession Agreement, and we are hopeful that this process is moving towards a successful conclusion and the issuance of the mining licence at Abu Marawat. The issuance of the first gold mining licence in Egypt to a publicly listed foreign investor since Sukari in 2005 would represent a very significant step forwards for Aton, as well as for Egypt, the Ministry of Petroleum and EMRA."

2023 Abu Marawat RC drilling programme

The exploration RC drilling, undertaken by Geodrill's Egyptian branch, Geodrill for Leasing and Specialized Services Freezone LLC, commenced at the West Garida prospect, 3km east of Hamama West. Prior to the rig being mobilised to Abu Gaharish, 3 groundwater exploration holes were also drilled to test the Nubian Sandstone aguifer approximately 20km west of the Hamama project. Drilling at Abu Gaharish, and

subsequently at the Semna and Zeno prospects was supported by fly camps. The drill metres for the programme are summarised in Table 1.

Project	Number of holes	Total metres
Groundwater exploration (Nubian Sandstone)	3	628
West Garida	21	1,522
Abu Gaharish	22	3,300
Semna	21	3,662
Zeno	21	3,216
Total	88	12,328

Table 1: Breakdown of the RC drilling completed

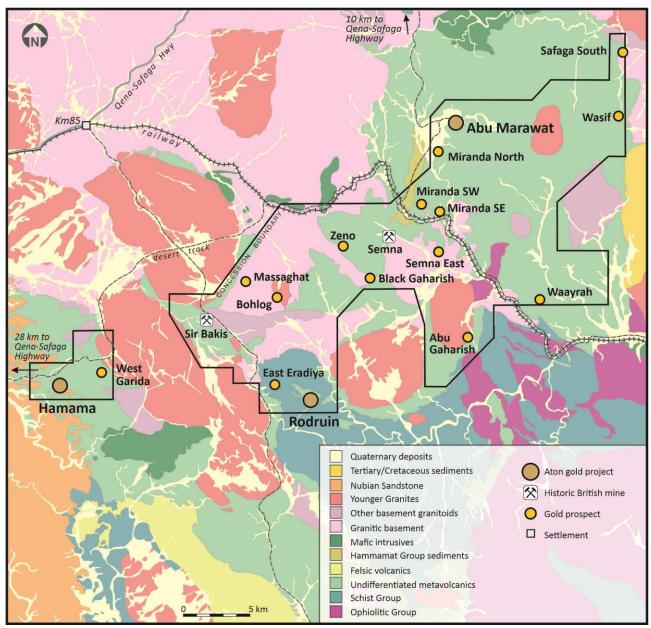


Figure 1: Geology and prospect plan of the Abu Marawat Concession

Groundwater exploration drilling

2 holes HAW-01 and HAW-02 were drilled south of the Hamama access road approximately 20km west of the Hamama West mineral deposit to test the potential of the Nubian Sandstone Formation to produce sufficient

volumes of process water for the proposed Hamama West. Hole HAW-03 was drilled approximately 4km further east of HAW-01, back towards Hamama. Details and locations of the holes are provided in Table 2.

Hole ID	Collar	co-ordinates	s ^{1,2}	ЕОН	Din	Grid	Comments
noie iD	X	Y	Z	depth (m)	Dip	azimuth	Comments
HAW-01	517072	2910962	291	100	-90	-	Hole dry
HAW-02	516679	2909410	285	294	-90	-	c. 700 l/min flow from 270m depth
HAW-03	520792	2911753	315	234	-90	-	c. 480 l/min flow from 222m depth

Notes:

- 1) All co-ordinates are UTM (WGS84) Zone 36R
- 2) Collar surveys undertaken using handheld Garmin GPS

Table 2: Collar details of groundwater exploration drill holes

The RC holes were drilled at $5\frac{3}{4}$ " diameter, with holes HAW-02 and HAW-03 reducing to $5\frac{1}{2}$ " diameter. Holes HAW-01 and HAW-02 were cased through the surface alluvial sheet wash deposits to 12m depth, and HAW-03 was cased to 30m depth.

Hole HAW-01 failed to intersect any water by its target depth of 100m, and was terminated. Holes HAW-02 and HAW-03 both intersected significant groundwater from about 120m depth, with the drillers unable to keep the holes and samples dry (Figure 2). Hole HAW-02 was terminated at 294m, and HAW-03 was terminated at 234m, due to the hole collapsing in water-bearing sandstones.

All holes were drilled through a variegated sequence of predominantly brown, red, grey and black shales and mudstones, with intercalated sandstone units interpreted as belonging to the Quseir Unit of the Cretaceous Nubian Sandstone Formation. The target basal Tarif Sandstone Unit of the Nubian Sandstone Formation was not intersected in any of the 3 holes.

Figure 2: Drilling on groundwater exploration hole HAW-02

Both holes HAW-02 and HAW-03 started making significant amounts of water from about 120m onwards, with the volume increasing with depth. Water was primarily hosted within sandstone horizons intercalated with the predominantly shale and mudstone sequence. Airlift testing was carried out on both holes, using the booster compressor, but no formal pump testing was undertaken. Water flows were measured using a V-notch weir

system. Significant water flows were recorded from both holes HAW-02 and HAW-03, to a maximum of *c*. 700 l/min from 270m depth, and 480 l/min from 220m depth, respectively.

The programme has successfully proved the concept that the Nubian Sandstone cover which outcrops to the west of the Hamama area could potentially host sufficient groundwater resources to provide process water for the proposed Hamama West open mine and heap leach project. It is noted that the drilling failed to intersect the deeper basal Tarif Sandstone Unit of the Nubian Sandstone Formation that was the primary target of the programme. The Nubian Sandstone cover dips west towards the Nile River basin, which suggests that the Tarif Formation aquifer could be potentially intersected and exploited for groundwater at shallower depths and further east towards the Hamama project, thus reducing the required pumping distance.

Exploration RC drilling

West Garida

21 drill holes, WGP-006 to WGP-025, were completed at the West Garida prospect (Figure 1), for a total of 1,522m metres (Table 3 and Figure 3). The mineralisation at West Garida is associated with several narrow shallow-dipping coarse gold-bearing quartz veins, with the drilling designed to follow up on a previous RC drill intersection of 41.7 g/t Au, 263 g/t Ag and 2.08% Pb over a 1m interval in hole WGP-003 (see news release dated September 1, 2022).

Hole ID	Collar co-ordinates 1,2			ЕОН	Din	Grid	Comments
Hole ID	Х	Y	Z	depth (m)	Dip	azimuth	Comments
WGP-006	537327.4	2914773.9	630.6	100	-71.3	0.8	Vein #1
WGP-007	537327.4	2914776.0	630.6	100	-51.3	3.1	Vein #1
WGP-008	537327.1	2914762.7	630.6	57	-65.0	179.6	Vein #1 (hole abandoned)
WGP-008a	537327.4	2914766.2	630.6	120	-64.8	181.1	Vein #1 (re-drill of WGP-008)
WGP-009	537327.5	2914767.1	630.7	110	-78.7	180.6	Vein #1
WGP-010	537240.4	2914803.6	614.7	60	-48.1	1.4	Vein #1
WGP-011	537240.2	2914800.3	614.9	60	-89.5	351.9	Vein #1
WGP-012	537238.9	2914737.2	629.7	100	-55.0	358.1	Vein #1
WGP-013	537239.0	2914735.6	629.8	100	-74.3	1.1	Vein #1
WGP-014	537239.0	2914734.6	629.9	100	-90.0	0.0	Vein #1
WGP-015	537239.1	2914728.3	630.1	110	-80.6	189.1	Vein #1
WGP-016	536845.5	2914990.0	637.6	40	-89.8	221.4	Vein #2
WGP-017	536847.7	2914991.3	637.7	40	-50.0	59.5	Vein #2
WGP-018	536797.7	2914961.8	634.3	40	-50.6	58.8	Vein #2
WGP-019	536795.2	2914960.6	634.2	50	-89.6	335.8	Vein #2
WGP-020	536790.9	2914958.3	633.9	75	-55.4	237.7	Vein #2
WGP-021	536780.6	2915143.5	627.5	50	-50.5	129.2	Vein #3
WGP-022	536778.6	2915145.1	627.4	60	-89.4	147.9	Vein #3
WGP-023	536775.8	2915147.1	627.3	70	-59.2	311.5	Vein #3
WGP-024	536836.9	2914991.5	637.2	40	-50.3	315.4	Vein #2
WGP-025	536845.1	2914986.0	637.6	40	-50.1	179.5	Vein #2

Notes:

- All co-ordinates are UTM (WGS84) Zone 36R
- 2) Collar surveys undertaken using a Leica Viva GS15 differential GPS system
- B) Drill holes were surveyed using a Reflex EZ-TRAC magnetic survey tool, within stainless steel rods

Table 3: Collar details of RC exploration drill holes at West Garida

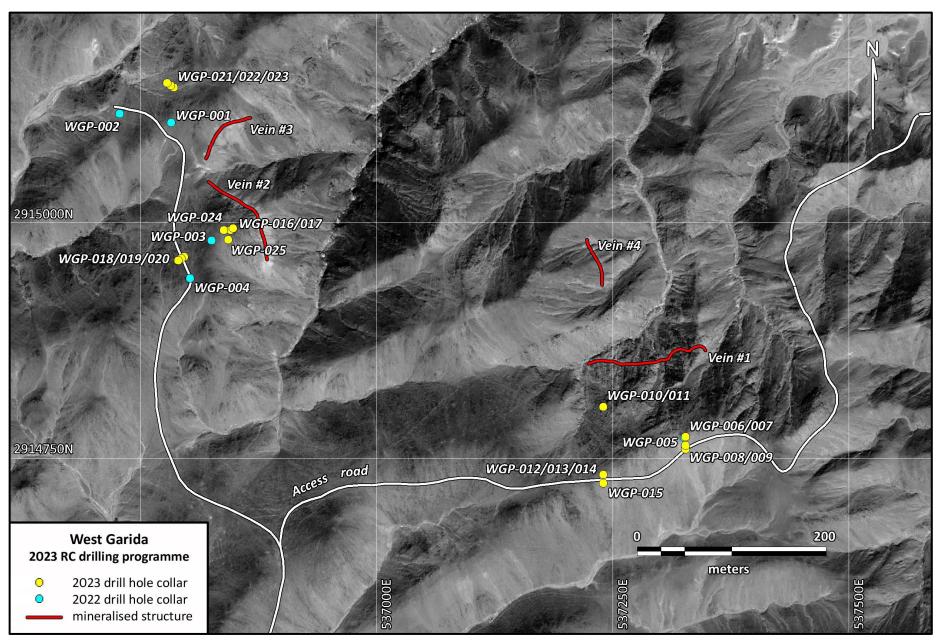


Figure 3: West Garida drill hole collar plan

Hala ID	Int	ersection (m)		Assays (ppm)					
Hole ID	From	То	Interval	Au	Ag	Cu	Pb	Zn	Comments	
WGP-010	35	36	1	2.03	1.6	35	23	164	Vein #1	
WGP-011	24	25	1	2.35	10.1	215	900	1,390	Vein #1	
WGP-012	50	52	2	3.66	24.3	36	867	75	Vein #1	
WGP-018	21	22	1	3.25	24.0	221	2,870	3,100	Vein #2	
WGP-023	68	69	1	4.00	4.9	217	7	1,800	Vein #3	

Table 4: Significant intersections from West Garida

The drill holes generally intersected the targeted mineralised structures (Veins #1, #2 and #3, see Figure 3). All mineralised intercepts from the West Garida drilling are provided in Appendix A, with significant intersections shown in Table 4 above. The drilling largely confirmed the presence and continuity of the shallow dipping mineralised structures, but did not replicate the high grades from surface sampling of the coarse-gold bearing structures, nor the results of hole WGP-003 (see news release dated September 1, 2022).

Abu Gaharish

II-I-ID	Collar	co-ordinates	s ^{1,2}	ЕОН	Di-	Grid	0
Hole ID	Х	Y	Z	depth (m)	Dip	azimuth	Comments
GHP-001	564503.2	2917326.1	481.7	200	-53.1	79.6	Main Zone
GHP-002	564431.0	2917336.0	477.3	200	-53.4	79.0	Main Zone
GHP-003	564372.9	2917345.9	478.1	150	-52.0	90.9	Main Zone
GHP-004	564307.4	2917342.2	478.8	150	-55.6	88.5	Main Zone
GHP-005	564239.3	2917351.0	478.1	120	-56.5	93.0	Main Zone
GHP-006	564488.8	2917177.5	480.7	200	-53.8	91.0	Main Zone
GHP-007	564420.8	2917179.8	479.6	200	-55.0	90.3	Main Zone
GHP-008	564347.1	2917185.3	483.0	150	-55.3	90.4	Main Zone
GHP-009	564701.8	2916804.0	516.5	150	-54.1	90.3	SE shear
GHP-010	564630.2	2916659.1	533.2	120	-54.8	88.2	SE shear
GHP-011	564406.4	2916699.0	495.9	100	-53.7	89.4	SW shear
GHP-012	563841.5	2916890.5	490.6	140	-49.7	70.9	Stockwork zone
GHP-013	563919.9	2916955.1	508.9	140	-47.7	74.9	Stockwork zone
GHP-014	563996.0	2916983.4	501.8	140	-50.8	71.5	Stockwork zone
GHP-015	564566.5	2917491.7	470.6	150	-53.7	88.7	Main Zone
GHP-016	564523.1	2917500.6	475.4	200	-53.4	84.3	Main Zone
GHP-017	564447.2	2917507.1	474.2	160	-54.0	89.7	Main Zone
GHP-018	564562.3	2918038.7	464.3	120	-54.5	89.9	Ionic leach anomaly
GHP-019	564491.8	2918038.3	465.3	120	-55.0	90.9	Ionic leach anomaly
GHP-020	564460.4	2918197.8	462.5	120	-53.1	90.7	Ionic leach anomaly
GHP-021	564392.0	2918198.2	461.7	120	-54.7	91.4	Ionic leach anomaly
GHP-022	564996.4	2918271.1	488.2	150	-54.9	105.3	NEX Vein zone

Notes:

- 1) All co-ordinates are UTM (WGS84) Zone 36R
- 2) Collar surveys undertaken using a Leica Viva GS15 differential GPS system
- 3) Drill holes were surveyed using a gyroscopic survey tool

 Table 5: Collar details of RC exploration drill holes at Abu Gaharish

22 drill holes, GHP-001 to GHP-022, were completed at the Abu Gaharish prospect (Figure 1), for a total of 3,300m metres (Table 5 and Figure 4) in this first pass programme. Holes were drilled over a broad area covering *c.* 1.7km of strike length of mineralisation that roughly parallels the contact of the Gaharish alkali granite pluton with the surrounding metasedimentary and metavolcanic package of country rocks. 11 holes were drilled at the Gaharish Main Zone, which was the main focus of ancient and recent artisanal mine workings (GHP-001 to GHP-008, and GHP-015 to GHP-017), 3 holes were drilled to test shear structures located within country rock package (GHP-009 to GHP-011), 3 holes were drilled to test a possible stockwork and sheeted vein zone southwest of the Main Zone, and within the Gaharish pluton itself (GHP-012 to GHP-014), 4 holes were drilled to test an ionic leach wadi sediment geochemical anomaly (GHP-018 to GHP-021), and the final hole was drilled to test the North East Extension ("NEX") Vein structure, along strike and north-northeast of the Main Zone (GHP-022). The collar locations of all the drill holes are shown in Figure 4.

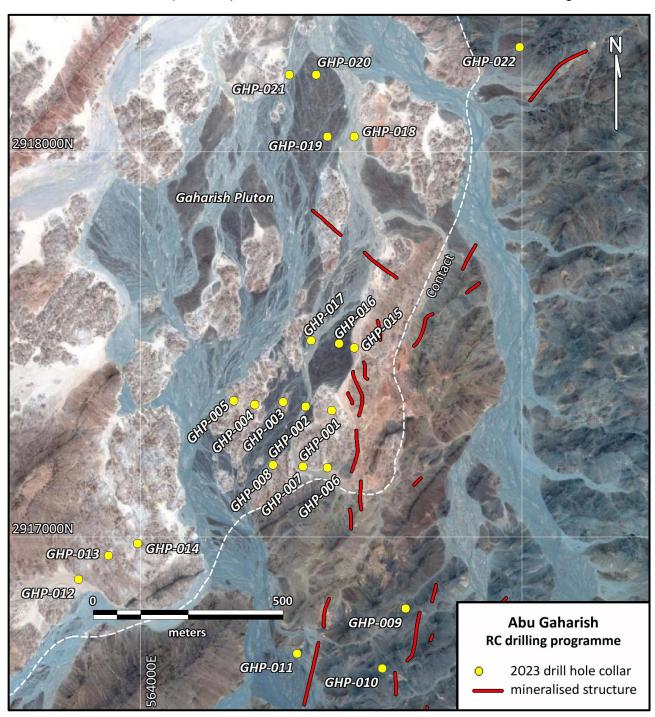


Figure 4: Abu Gaharish drill hole collar plan

All mineralised intercepts from the Abu Gaharish drilling are provided in Appendix B, with significant intersections shown in Table 6. The drilling identified a broad mineralised envelope over a *c.* 350m strike length associated with the Main Zone, containing higher grade structures, which returned intercepts including 2m @ 8.16 g/t Au and 3m @ 4.61 g/t Au. Screen fire assay of a single 1m sample indicated the presence of coarse gold in these zones. Narrow lower grade intercepts were returned from the southern shear structures in the country rocks, and a broad low grade interval in hole GHP-012 indicated the potential for sheeted vein style reduced intrusion-related gold ("RIRG") style mineralisation to the southwest of the Main Zone.

	Int	ersection (m)		As				
Hole ID	From	То	Interval	Au	Ag	Cu	Pb	Zn	Comments
GHP-001	1	5	4	2.70	2.2	69	193	181	Main Zone
and	61	70	9	2.10	2.3	57	385	457	
incl.	65	67	2	8.16	8.3	205	1,568	1,706	
GHP-002	55	56	1	6.69	10.2	70	750	363	Main Zone
GHP-006	80	83	3	3.27	5.9	47	199	394	Main Zone
and	124	126	2	3.52	8.1	58	126	359	
GHP-007	8	10	2	3.78	1.3	14	190	188	Main Zone
GHP-015	11	13	2	2.98	4.1	40	200	329	Main Zone
and	49	50	1	4.77	-	-	1	1	Gold by screen fire assay, coarse gold present
GHP-016	37	42	5	1.23	0.5	14	26	102	Main Zone
and	49	52	3	4.61	14.8	186	967	849	

Table 6: Significant intersections from Abu Gaharish

Sampling and analytical procedures

The RC holes were drilled at 5¾ or 5½ diameter, and the bulk percussion chip samples were collected directly into pre-written large plastic bags from the cyclone every metre, numbered with the hole number and hole depths, and laid out sequentially at the drill site. Between each metre of drilling the cyclone and top box were cleaned out with compressed air. The bags were logged on the drill sites by Aton geologists. The bulk 1m samples were weighed, and subsequently riffle split through a 3-tier splitter onsite by Aton field staff to produce an approximately 1/8 split, which was collected in cloth bags, numbered and tagged with the hole number and depth. The splitter was cleaned with compressed air between each sample. The reject material from this initial bulk split was re-bagged, labelled and tagged, and retained on the drill sites. A representative sample of each metre was washed and stored in marked plastic chip trays, each containing 20m of samples, photographed, and retained onsite as a permanent record of the drill hole.

The 1m split samples, weighing approximately 5kg each were then transported to the Rodruin sample processing facility, where they were 1/2 riffle split into 2 separate sub-samples, weighing approximately 2.5kg. One of these sub-samples was marked and labelled, and retained at the laboratory for storage. The second 1m sub-samples were then combined into 4m composite samples, weighing approximately 10kg. These were thoroughly mixed and again riffle split to produce nominal *c*. 250-500g 4m composite samples which were dispatched to ALS Minerals for analysis. Again the splitter was cleaned with compressed air between each sample. The 4m composite samples were allocated new sample numbers. The bulk reject material from the riffle split 4m composite samples was disposed of. QAQC samples were inserted into the 4m composite sample stream at a rate of approximately 1 certified reference material (or "standard" sample) every 60 samples, 1 blank sample every 30 samples, and 1 field duplicate split sample every 30 samples.

The 4m composite samples were shipped to ALS Minerals sample preparation laboratory at Marsa Alam, Egypt, where they were pulverised to a size fraction of better than 85% passing 75 microns. From this pulverised material a further sub-sample was split off with a nominal *c.* 50g size, which was shipped on to ALS

Minerals at Rosia Montana, Romania for analysis. The 4m composite samples were analysed for gold by fire assay with an atomic absorption spectroscopy ("AAS") finish (analytical code Au-AA23. Any high grade samples (Au >10 g/t) were re-analysed using analytical code Au-GRA21 (also fire assay, with a gravimetric finish).

Upon receipt of the final 4m composite assay results from ALS, a number of the retained 1m sub-samples were selected by a senior Aton geologist for re-assaying, corresponding to 4m composite assays deemed to be of significance. The selected 1m sub-samples were again riffle split to produce nominal *c.* 250-500g 1m split samples which were again allocated new sample numbers. These were dispatched to ALS Minerals for the same sample preparation at Marsa Alam, and for subsequent analysis at Rosia Montana. The bulk reject material from the 1m sub-sample splits was re-bagged and retained onsite for storage at Rodruin. QAQC samples were inserted into the 1m split sample stream at a rate of approximately 1 standard every 30 samples, 1 blank sample every 15 samples, and 1 field duplicate split sample every 15 samples.

The 1m split samples were again analysed for gold by fire assay (analytical code Au-AA23), and for silver, copper, lead and zinc using an aqua regia digest followed by an AAS finish (analytical code AA45). Any high grade gold samples (Au >10 g/t) were again re-analysed using analytical code Au-GRA21 (also fire assay, with a gravimetric finish). Any high grade Ag and base metal samples (Ag >100 g/t, and Cu, Pb and Zn >10,000ppm or >1%) were re-analysed using the ore grade technique AA46 (also an aqua regia digest followed by an AAS finish).

All intersections herein reported relate to 1m split samples.

About Aton Resources Inc.

Aton Resources Inc. (AAN: TSX-V) is focused on its 100% owned Abu Marawat Concession ("Abu Marawat"), located in Egypt's Arabian-Nubian Shield, approximately 200 km north of Centamin's world-class Sukari gold mine. Aton has identified numerous gold and base metal exploration targets at Abu Marawat, including the Hamama deposit in the west, the Abu Marawat deposit in the northeast, and the advanced Rodruin exploration prospect in the south of the Concession. Two historic British gold mines are also located on the Concession at Sir Bakis and Semna. Aton has identified several distinct geological trends within Abu Marawat, which display potential for the development of a variety of styles of precious and base metal mineralisation. Abu Marawat is 447.7 km² in size and is located in an area of excellent infrastructure; a four-lane highway, a 220kV power line, and a water pipeline are in close proximity, as are the international airports at Hurghada and Luxor.

Qualified person

The technical information contained in this News Release was prepared by Javier Orduña BSc (hons), MSc, MCSM, DIC, MAIG, SEG(M), Exploration Manager of Aton Resources Inc. Mr. Orduña is a qualified person (QP) under National Instrument 43-101 Standards of Disclosure for Mineral Projects.

For further information regarding Aton Resources Inc., please visit us at www.atonresources.com or contact:

TONNO VAHK

Interim CEO

Tel: +1 604 318 0390

Email: info@atonresources.com

Note Regarding Forward-Looking Statements

Some of the statements contained in this release are forward-looking statements. Since forward-looking statements address future events and conditions; by their very nature they involve inherent risks and uncertainties. Actual results in each case could differ materially from those currently anticipated in such statements.

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Appendix A – Significant intersections from the West Garida prospect

	Int	ersection ((m)						
Hole ID	From	То	Interval	Au	Ag	Cu	Pb	Zn	Comments
WGP-006	67	68	1	0.34	1.3	68	11	230	
WGP-007	85	86	1	0.42	2.0	91	16	248	
WGP-008a	86	87	1	0.42	3.6	71	25	875	
WGP-009	72	75	3	0.68	2.4	151	24	2,821	
WGP-010	28	29	1	1.37	1.2	84	155	875	
and	35	36	1	2.03	1.6	35	23	164	
WGP-011	24	25	1	2.35	10.1	215	900	1,390	
WGP-012	50	52	2	3.66	24.3	36	867	75	
WGP-013	-	-	-	-	-	-	-	-	NSA > 0.06 g/t Au
WGP-014	-	-	-	-	-	-	-	-	NSA > 0.04 g/t Au
WGP-015	-	-	-	-	-	-	-	-	NSA > 0.17 g/t Au
WGP-016	-	-	-	-	-	-	-	-	NSA > 0.20 g/t Au
WGP-017	23	25	2	1.79	33.2	509	497	3,595	
WGP-018	21	22	1	3.25	24.0	221	2,870	3,100	
WGP-019	25	26	1	1.90	18.6	106	1,445	1,360	
WGP-020	-	-	-	-	-	-	-	-	NSA > 0.04 g/t Au
WGP-021	32	34	2	0.32	1.1	156	35	2,240	
WGP-022	21	22	1	0.40	0.3	45	8	299	
and	33	34	1	0.36	0.8	54	13	177	
and	51	52	1	0.47	0.5	74	10	76	
WGP-023	49	50	1	0.62	1.3	71	11	720	
and	68	69	1	4.00	4.9	217	7	1,800	
WGP-024	20	22	2	0.70	15.7	527	847	1,870	
WGP-025	26	27	1	0.55	24.0	242	819	1,705	

<u>Notes:</u>
1) | 1
2) | 1

Mineralised intercepts above 0.3 g/t Au
Mineralised intercepts calculated from the assay results of 1m riffle split samples

	Int	Intersection (m) Assays (ppm)							
Hole ID	From	То	Interval	Au	Ag	Cu	Pb	Zn	Comments
GHP-001	1	5	4	2.70	2.2	69	193	181	Main Zone
and	18	19	1	2.82	5.1	31	733	344	-
and	51	53	2	1.38	1.4	17	93	215	-
and	61	70	9	2.10	2.3	57	385	457	-
incl.	65	67	2	8.16	8.3	205	1,568	1,706	
and	76	77	1	3.19	2.2	12	315	1010	
and	96	97	1	0.88	5.1	17	223	349	
GHP-002	55	56	1	6.69	10.2	70	750	363	Main Zone
and	98	100	2	0.79	1.2	22	38	48	
and	115	116	1	0.51	1.2	11	35	58	
GHP-003	96	97	1	0.50	0.9	48	10	65	Main Zone
GHP-004	87	88	1	0.63	0.7	28	8	53	Main Zone
GHP-005	12	13	1	1.03	0.8	17	85	32	Main Zone
GHP-006	68	69	1	0.58	0.8	14	27	83	Main Zone
and	80	83	3	3.27	5.9	47	199	394	
and	124	126	2	3.52	8.1	58	126	359	
and	131	132	1	0.96	0.9	12	89	346	
GHP-007	8	10	2	3.78	1.3	14	190	188	Main Zone
and	54	55	1	0.89	2.3	81	148	125	
and	67	68	1	0.73	1.2	19	9	82	
and	112	113	1	0.50	0.7	15	21	59	
GHP-008	59	60	1	1.13	0.5	14	22	58	Main Zone
and	102	104	2	0.79	0.8	6	11	58	
and	141	142	1	0.50	2.0	13	60	138	
GHP-009	-	-	-	1	-	-	-	-	NSA > 0.265 g/t Au (SE Shear)
GHP-010	43	44	1	0.64	1.2	58	8	82	SE Shear
GHP-011	55	57	2	1.36	0.9	35	27	111	SW Shear
GHP-012 ³	0	29	29	0.28	0.3	9	15	56	Stockwork zone, possible RIRG style mineralisation?
GHP-013	52	53	1	2.50	3.4	8	29	79	Stockwork zone
and	75	78	3	0.51	0.6	8	25	76	
GHP-014	-	-	-	-	-	-	-	-	NSA > 0.213 g/t Au (stockwork zone)
GHP-015	11	13	2	2.98	4.1	40	200	329	Main Zone
and	17	19	2	0.89	1.9	17	63	136	
and	34	35	1	1.02	1.1	21	77	208	1
and	49	50	1	4.77	-	-	-	-	Gold by screen fire assay, coarse gold present
and	55	57	2	1.60	1.3	21	60	221	<u> </u>
GHP-016	12	13	1	0.57	0.6	12	106	131	Main Zone
and	32	33	1	0.73	0.8	13	203	248]
and	37	42	5	1.23	0.5	14	26	102	
and	49	52	3	4.61	14.8	186	967	849]
and	61	62	1	1.46	1.4	6	80	198	

Hele ID	Int	ersection ((m)		As	Comments			
Hole ID	From	То	From	То	From	То	From	То	Comments
GHP-016	86	87	1	0.70	0.6	5	119	66	
and	90	91	1	0.72	1.2	11	59	87	
and	102	103	1	0.82	0.6	58	11	59	
GHP-017	105	106	1	1.71	2.2	17	68	86	Main Zone
and	119	120	1	1.35	0.6	3	90	324	
and	123	125	2	0.65	0.9	15	30	66	
GHP-018	-	-	-	-	-	-	-	-	NSA > 0.099 g/t Au (IL anomaly)
GHP-019	-	-	-	-	-	-	-	-	NSA > 0.117 g/t Au (IL anomaly)
GHP-020	•	ı	-	-	-	ı	-	•	NSA > 0.175 g/t Au (IL anomaly)
GHP-021	-	-	-		-	-	-	-	NSA > 0.144 g/t Au (IL anomaly)
GHP-022	•		-	-	-	•	-	-	NSA > 0.109 g/t Au (NEX Vein)

- Notes:

 1) Mineralised intercepts calculated using a 0.3 g/t Au cut-off grade
 2) Mineralised intercepts calculated from the assay results of 1m riffle split samples
 3) Low-grade zone of potential stockwork RIRG style mineralisation, some assays below cut-off in this zone